## Marijuana Math: Calculating milligrams per milliliter in liquids

Accurately converting percentage to milligrams per milliliter can be confusing, and it’s easy to get it wrong if you don’t factor in the density of the liquid suspension.

You know how oils typically float to the top when mixed in water, while other substances like honey sink to the bottom? That’s because their density and molecular weight are different. One is lighter and less dense, while the other is heavier and more dense.

In order to accurately calculate milligrams per milliliter, you’ll need the following information: Potency percentage, Density of the suspension, and Volume of the liquid.

Let’s say you want to know how many mg are in a 50 ml bottle of ethanol tincture at 2% potency:

Potency Percentage = 2%
Density of ethanol* = 0.789 g/ml
Volume of liquid = 50 ml

Step One: Convert Density from g/ml to mg/ml:
0.789 x 1000 = 789 mg

Step Two: Multiply Density in mg/ml by Potency Percentage:
789 x 2% = 15.78 mg/ml

Step Three: Multiply mg/ml by Volume of liquid:
15.78 x 50 = 789 mg in 50 ml

For this example, let’s assume you’re putting .5 ml of infused MCT (liquid coconut oil) into capsules:

Potency Percentage = 3%
Density of MCT* = 0.955 g/ml
Volume of liquid = 0.5 ml

Step One: Convert density from g/ml to mg/ml:
0.955 x 1000 = 955 mg

Step Two: Multiply Density in mg/ml by Potency Percentage:
955 x 3% = 28.65 mg/ml

Step Three: Multiply mg/ml by Volume of liquid:
28.65 x 0.5 = 14.33 mg in 0.50 ml

Let’s say you’re planning to bake some edibles and want to know how many milligrams are in a tablespoon of butter with a potency of 0.5%.

Potency Percentage = .5%
Density of butter* = 0.911 g/ml
Volume of liquid = 15 ml (approximately 1 tablespoon)

Step One: Convert density from g/ml to mg/ml:
0.911 x 1000 = 911 mg

Step Two: Multiply Density in mg/ml by Potency Percentage:
911 x 0.5% = 4.56 mg/ml

Step Three: Multiply mg/ml by Volume of liquid:
4.56 x 15 = 68.4 mg in 15 ml (1 tbsp)

*Each suspension will have a different density. Here are some common ones.
Ethanol: .789 g/mL
Vegetable glycerin = 1.26 g/mL
Coconut oil = .926 g/mL
Olive oil = .915 g/mL
Safflower oil = .921 g/mL
Butter = .911 g/mL
MCT Oil = .955 g/mL
Honey = 1.43 g/mL
(Most oils have a density between 0.90 to 0.95)

Bring your infused oils to The Good Lab for a Cannabinoid Potency Profile. We can help you figure out the milligrams per milliliter. Contact us to schedule a time to drop off your sample.

Uncategorized

## Accurately Dosing Cannabis Capsules

Here at The Good Lab, we’ve been experimenting with making capsules, and we’ve found a really slick and inexpensive way to get accurate dosing using concentrates and coconut oil.

We had some concentrates around we didn’t particularly like but didn’t want to waste, so we decided to try dissolving them in coconut oil. At a ratio of 10 parts coconut oil to 1 part concentrate, they dissolved and homogenized beautifully.

Using our HPLC, we tested the potency of the oil before putting it into capsules (See chart below). The total cannabinoid percentage of 26.64% equates to 245 milligrams per milliliter. However, when we tried a half milliliter of the oil, we didn’t get the desired effect: sleep.

Since we planned to use these capsules for sleep, we wanted more activated THC. The higher ratio of THC-A to THC wasn’t likely to be as effective on sleep as we needed. The solution: decarboxylate the oil blend.

We warmed the oil in a beaker on a coffee cup warmer at 190 degrees Fahrenheit and tested it after 3 hours, 5 hours and 8 hours until we got the ratio we wanted.

Our initial ratio of THC:THC-A was 1:2. After decarboxylating for a few hours we flipped that ratio to 2:1.

From the chart, it looks like we lost a little potency in the process, but that can be misleading due to the natural loss of weight during decarboxylation. We can also see that the THC is beginning to break down into CBN, a cannabinoid more conducive to sleep, as that percentage slowly rises.

We filled capsules with .5ml of the decarbed infused coconut oil.

Approximate potency per capsule:
Total cannabinoids: 115 mg
CBD-A: 14 mg
CBD: 43 mg
THC-A: 15 mg
THC: 37 mg
Other cannabinoids: 7 mg

Cannabinoid ratio:
CBD:CBD-A = 3:1
THC:THC-A = 5:2
THC:CBD = 1:1

This blend and potency seems to be working well for both sleep and pain.

We can do this for customers too, using our HPLC. After testing your concentrates for cannabinoid profile and potency, we blend them into oil to get the dilution needed for capsules. This is a great way to get accurate dosing at a price you can afford. Call us for more information.

Uncategorized

## The Pot Scientist and The Good Lab

Our friend The Pot Scientist, Carter Baird, is so excited about The Good Lab!

Thanks, Carter, for your enthusiasm and support. We’re glad you found us too!

There’s more entertaining wisdom from The Pot Scientist at his YouTube channel. Check it out!

Uncategorized

Thank you Sensi Magazine for this little profile in the June edition (page 47)! Now patients and consumers have a way to test their bud. Spread the word!

Uncategorized

## Potency Testing: My Canna-Butter

We’ve had a lot of fun exploring all the useful information we can find out about potency with our HPLC.

The other day, I made a batch of canna-butter. I was really excited to find out what the real potency of my homemade infusion was. But that wasn’t enough. I decided to do a little more “research” during the process.

First, we tested the raw trim before it was decarboxylated and made into butter. The results were 7.3% THCa, 0.5% THC, and 0.02% CBN. At that potency, my one ounce of trim contains approximately 1600 mg of THC.

When we decarboxylated the trim in the oven, we took samples at intervals during the process to see how the cannabinoid profile changed. It was fascinating to compare the results. You can actually see the THCa convert to THC as it decarboxylates. You can also see the amount of CBN increase slightly as the THC slowly breaks down in the heat.

 THCA % THC % CBN % Pre-decarb 7.33 0.49 0.02 20 minutes 2.12 4.67 0.08 40 minutes 0.65 5.07 0.10 60 minutes 0.30 5.60 0.12

After 1 hour in a 250 degree oven, the THC potency was 5.6%. I used 28 grams of trim with approximately 1570 mg of THC to infuse 2 cups of butter.

Finally, when the butter was finished and strained, we took another sample to find out the potency of the final product so I could more easily dose my edibles. The final THC content was 0.3%. You can see the final report of the potency test results here.

That may not sound like much, until you convert it into milligrams per milliliter (using voodoo math, of course). At this potency, my butter has approximately 2.7 mg/ml. A teaspoon is around 5 milliliters. That means that each teaspoon of my butter has around 13.5 mg of THC. A tablespoon would contain around 40 mg.

I made 2 cups, or 32 tablespoons, of butter. At 40 mg per tablespoon, the entire batch comes out to around 1280 mg, making my extraction efficiency over 80%. Not bad.

After years of making homemade edibles, it’s so cool to have this potency information! I won’t have to dose my edibles blindly anymore. I gave my neighbors some butter to try and it was so nice to be able to tell them how potent it really was, instead of just guessing.

~ Teri Robnett (Rx MaryJane)

Uncategorized

## Potency testing: GC vs. LC

At The Good Lab, we use High-performance liquid chromatography (HPLC) for potency testing. Why is that important? Here’s a great explanation of the difference between gas chromatography (GC) and liquid chromatography (LC) from Lift Cannabis News Magazine (Canada).

### Potency Testing

Marijuana is a complex matrix. Like many natural products it contains thousands of compounds, many of which have yet to be discovered or understood. Separating out the THC and CBD from the diverse soup of compounds contained in your marijuana is essentially like looking for a few needles in a big haystack.

Chromatography is the chemist’s way of sorting out that haystack. In the cannabis world, potency is tested by liquid chromatography or gas chromatography. Although there are some promising techniques for testing potency using spectroscopy instead of chromatography, chromatography is currently the industry standard method used in Cannabis testing labs from Colorado to Uruguay.

How it works

To get an understanding of how chromatography works and what the “liquid” and “gas” terminologies mean, one first needs to look at the “column”. This is where the separation occurs in both liquid and gas chromatography.

A column is basically a tube that contains a chemical phase or material (the stationary phase) and a “mobile phase” which is what keeps everything moving through the column (this is where the “liquid” and “gas” part comes in). In gas chromatography the mobile phase is a gas (an inert gas like helium, hydrogen or nitrogen) and in liquid chromatography the mobile phase is a liquid (like methanol, acetonitrile and water).

For the separation to take place, the marijuana extract gets put onto the column, and will be transitioned through the column from one end to the other by the mobile phase. The components inside the extract (the THC and CBD) will have varying affinity to stay in the stationary phase that lines the column. Some will stay in longer than others, so they become separated from each other.

At the end of the column, once each of the components have been separated, they will be detected or “counted”. There are differences between the way the THC and CBD are detected between liquid or gas chromatography. In gas chromatography (GC) you often see that the analysis is called “GCFID”. The FID part stands for “flame ionization detector” which is essentially like it sounds – a flame! The FID will burn the compounds as they exit the column and an electrical signal is measured. This signal is directly proportional to the amount of the compound present.

In this type of liquid chromatography, the measurement is by UV (ultraviolet). A light in the wavelength range of the ultraviolet (yes, the same UV that your Oakley sunglasses are blocking from your eyes) is directed through the compound as it exits the column. The helpful characteristic of the THC and CBD molecules is that they absorb UV light, and this absorption can be measured and is directly proportional to the amount of the compound present.

You may have noticed that “LC” is often referred to “HPLC”. This was just the chemists adding more letters to something that was already concise and sensible. The “HP” stands for high pressure, or sometimes “high performance”, which varies from manufacturer to manufacturer. Some even call their systems UHPLC or ULTRA high pressure liquid chromatography. A higher pressure system will do the analysis faster, but that’s it.

So what about the other cannabinoids? Chances are, if you are reading this blog you are aware that there are a lot of other important cannabinoids in marijuana; CBN (cannabinol), CBG (cannabigerol), CBC (cannabichromene), delta-8-THC and many, many more! Why are these not reported? Especially as there is an indication that these compounds have important medical properties. Well, for now, it is not required. But many labs and licensed producers are already testing for these other cannabinoids. And what about the acid forms of the compounds, THC-acid and CBD-acid? This brings out an important discussion that relates directly back to the analysis by GC versus LC.

The effect of the main psychoactive compound (THC) is greatly reduced unless the THC-A is converted to THC. When cannabis is heated, the acid forms of the cannabinoids will readily convert to their neutral forms. Without heating (and not waiting for a long time) THC will remain in acid form, and this structure of the molecule doesn’t bind to the receptors in our brain that happily accept the neutral THC (THC with the acid removed).

Why does this affect the choice of analytical instrumentation? Well, in order for GC (gas chromatography) to work, the marijuana extract has to be converted to gas form, which means it is heated before entering the column. Any acid cannabinoid compounds, such as THC-A will be converted to their neutral forms, and no acid compounds will be detected, Conversely, in LC, the extract in liquid state can be injected onto the column as is, and therefore, you can quantify all the acid and neutral forms of your cannabinoids.

Some argue that the GC better mimics the state in which marijuana is typically consumed; by smoking or vaporizing. However, many patients may choose to vaporize at lower temperatures, and they may in fact be consuming some of the cannabinoids in acid form. And what about the potential medical benefits of the acid cannabinoids and the other unreported cannabinoids such as CBC? At this early phase in our industry, we at Signoto believe it’s better to provide as much information as possible to medical practitioners and patients. It’s time to move quickly away from the mystery era of cannabis.

~Emily Kirkham

VP of Laboratory Operations at Signoto.

Uncategorized

## Go out and start your own lab

We fought hard to get access to the licensed cannabis labs for patients and caregivers, but the industry and the Marijuana Enforcement Division is having none of it. They told us if you want testing for patients, go out and start your own lab.

So we did!

Frustrated with the lack of testing available to home cultivators, especially patients who need information about their medicine, we decided to do something about it. Thanks to the support of one of the state licensed labs, we can provide quality, accurate test results you can rely on.

We starting out by offering a Cannabinoid Potency Profile using High Performance Liquid Chromatography (HPLC). We’ll be expanding our services over the next several months.

Call 303-455-3801